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Abstract 

 Gene regulatory networks explain how cells control the expression of genes, which, together 

with some additional regulation downstream, determines the production of proteins essential 

for cellular function. Bayesian networks (BNs) are practical tools which have been 

successfully implemented in learning gene networks based on microarray gene expression 

data. All existing methods for inferring Gene Regulatory Networks (GRNs) from gene 

expression data sets have some strengths and weaknesses. There is still a large space for current 

approaches to be improved. In the Bayesian network the dependency of two variables needs to 

be determined. Conditional mutual information (CMI) is a suitable tool for detecting the joint 

conditional linear and nonlinear dependency between genes, which in accordance with the 

complexity of biology instead of linear assumption. 

 In this work, we introduce an iterative algorithm for inferring GRNs from gene expression 

data to improve the prediction accuracy of the PC Algorithm based on conditional mutual 

information test (PCA-CMI). 

We applied an iterative strategy to identify the directed acyclic graph. First, score searching 

method is applied to direct the edges of iS  (the skeleton of order i). Second, some scores 



values are defined for    ADJ X ADJ Y ( let ADJ(X) denotes the set of variables in the 

graph which are adjacent to X) and the nodes of separator set belongs to the set of nodes with 

high score values. Finally, to construct 1iS  conditional independence relationship between two 

genes given separator set is determined in iG (directed acyclic graph of order i). This iterative 

procedure is repeated until a stopping condition is met. 

In this work a mutual information test is applied in Max-Min Hill Climbing algorithm to direct 

the edges of skeleton. Only the local changes related to reversed edges between nodes are 

considered in the algorithm to determine suitable directed network. We run the algorithm on 50 

different starting graphs which are chosen randomly then one with the maximum score value is 

selected. 

The achieved improvement of our algorithm in comparison with PCA-CMI (Zhang et al., 

2011)is derived from reduction of statistical errors in the process of learning the skeleton of 

gene network. 

We use Red.Pen (java package for MIT score) to direct the edges of skeleton which can reduce 

running time and the required memory in comparison with Elvira system. The merits of the 

new algorithm are evaluated by applying this algorithm on the Dream3 challenge and real data 

set such as SOS DNA repair network with experiment data set in Escherichia coli. The results 

indicate that applying the proposed algorithm improves the precision of learning the structure 

of the GRNs. 
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